Top 10 science anniversaries of 2017
It’s time to celebrate pulsars, planets, Einstein, more Einstein and the laws of robotics
Second of two parts
Every year science offers a diverse menu of anniversaries to celebrate. Births (or deaths) of famous scientists, landmark discoveries or scientific papers — significant events of all sorts qualify for celebratory consideration, as long as the number of years gone by is some worthy number, like 25, 50, 75 or 100. Or simple multiples thereof with polysyllabic names.
2017 has more than enough such anniversaries for a Top 10 list, so some worthwhile events don’t even make the cut, such as the births of Stephen Hawking (1942) and Arthur C. Clarke (1917). The sesquicentennial of Michael Faraday’s death (1867) almost made the list, but was bumped at the last minute by a book. Namely:
10. On Growth and Form, centennial (1917)
A true magnum opus, by the Scottish biologist D’Arcy Wentworth Thompson, On Growth and Form has inspired many biologists with its mathematical analysis of physical and structural forces underlying the diversity of shapes and forms in the biological world. Nobel laureate biologist Sir Peter Medawar praised Thompson’s book as “beyond comparison the finest work of literature in all the annals of science that have been recorded in the English tongue.”
9. Birth of Abraham de Moivre, semiseptcentennial (1667).
Born in France on May 26, 1667, de Moivre moved as a young man to London where he did his best work, earning election to the Royal Society. Despite exceptional mathematical skill, though, he attained no academic position and earned a meager living as a tutor. He is most famous for his book The Doctrine of Chances, which was in essence an 18th century version of Gambling for Dummies. It contained major advances in probability theory and in later editions introduced the concept of the famous bell curve. Isaac Newton was impressed; the legend goes that when anyone asked him about probability, Newton said to go talk to de Moivre.
8. Exoplanets, quadranscentennial (1992)
It seems like exoplanets have been around almost forever (and probably actually were), but the first confirmed by Earthbound astronomers were reported just a quarter century ago. Three planets showed up orbiting not an ordinary star, but a pulsar, a rapidly spinning neutron star left behind by a supernova.Astrophysicists Aleksander Wolszczan and Dale Frail found a sign of the planets, first detected with the Arecibo radio telescope, in irregularities in the radio pulses from the millisecond pulsar PSR1257+12. Some luck was involved. In 1990, the Arecibo telescope was being repaired and couldn’t pivot to point at a specific target; instead it constantly watched just one region of the sky. PSR1257+12 just happened to float by.
7. Birth of Marie Curie, sesquicentennial (1867)
No doubt the most famous Polish-born scientist since Copernicus, Curie was born in Warsaw on November 7, 1867, as Maria Sklodowska. Challenged by poverty, family tragedies and poor health, she nevertheless excelled as a high school student. But she then worked as a governess, while continuing as much science education as possible, until her married sister invited her to Paris. There she completed her physics education with honors and met and married another young physicist, Pierre Curie.
Together they tackled the mystery of the newly discovered radioactivity, winning the physics Nobel in 1903 along with radioactivity’s discoverer, Henri Becquerel. Marie continued the work after her husband’s tragic death in 1906; she became the first person to win a second Nobel, awarded in chemistry in 1911 for her discovery of the new radioactive elements polonium and radium.
6. Laws of Robotics, semisesquicentennial (1942)
One of science fiction’s greatest contributions to modern technological philosophy was Isaac Asimov’s Laws of Robotics, which first appeared in a short story in the March 1942 issue of Astounding Science Fiction. Later, those laws formed the motif of his many robot novels and appeared in his famous Foundation Trilogy (and subsequent sequels and prequels). They were:
- A robot may not injure a human being or, through inaction, allow a human being to come to harm.
- A robot must obey the orders given to it by human beings, except where such orders would conflict with the First Law.
- A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.
Much later Asimov added a “zeroth law,” requiring robots to protect all of humankind even if that meant violating the other three laws. Artificial intelligence researchers all know about Asimov’s laws, but somehow have not managed to enforce them on social media. Incidentally, this year is also the quadranscentennial of Asimov’s death in 1992.
5. First sustained nuclear fission chain reaction, semisesquicentennial (1942)
Enrico Fermi, the Italian Nobel laureate, escaped fascist Italy to come to the United States shortly after nuclear fission’s discovery in Germany. Fermi directed construction of the “atomic pile,” or nuclear reactor, on a squash court under the stands of the University of Chicago’s football stadium. Fermi and his collaborators showed that neutrons emitted from fissioning uranium nuclei could induce more fission, creating a chain reaction capable of releasing enormous amounts of energy. Which it later did.4. Discovery of pulsars, semicentennial (1967)
Science’s awareness of the existence of pulsars turns 50 this year, thanks to the diligence of Irish astrophysicist Jocelyn Bell Burnell. She spent many late-night hours examining the data recordings from the radio telescope she helped to build that first spotted a signal from a pulsar. She recognized that the signal was something special even though others thought it was just a glitch in the apparatus. But she was a graduate student so her supervisor got the Nobel Prize instead of her.
3. Einstein’s theory of lasers, centennial (1917)
Albert Einstein did not actually invent the laser, but he developed the mathematical understanding that made lasers possible. By 1917, physicists knew that quantum physics played a part in the working of atoms, but the details were fuzzy. Niels Bohr had shown in 1913 that an atom’s electrons occupy different energy levels, and that falling from a high energy level to a lower one emits radiation.
Einstein worked out the math describing this process when many atoms have electrons in high-energy states and emit radiation. His analysis of matter-radiation interaction indicated that it would be possible to prepare many atoms in the same high-energy state and then stimulate them to emit radiation all at once. Properly done, all the atoms would emit radiation of identical wavelength with the waves in phase. A few decades later other physicists figured out how to build such a device for use as a powerful weapon or to read bar codes at grocery stores.
2. Qubits, quadranscentennial (1992)
An even better quantum anniversary than lasers is the presentation to the world of the concept of quantum bits of information. Physicist Ben Schumacher of Kenyon College in Ohio unveiled the idea at a conference in Dallas in 1992 (I was there). A “quantum bit” of information, or qubit, represents the information contained in a quantum particle, which can exist in multiple states at once. A photon, for instance, might simultaneously be in a state of horizontal or vertical polarization. Or an electron’s spin could be up and down at the same time.
Such states differ from classical bits of information in a computer, recorded as either a 0 or 1; a quantum bit is both 0 and 1 at the same time. It becomes one or the other only when observed, much like a flipped coin is nether heads nor tails until somebody catches it, or it lands on the 50 yard line. Schumacher’s idea did not get a lot of attention at first, but it eventually became the foundational idea for quantum information theory, a field now booming with efforts to construct a quantum computer based on the manipulation of qubits.
1. Birth of modern cosmology, centennial (1917)
It might seem unfair that Einstein gets two Top 10 anniversaries in 2017, but 1917 was a good year for him. Before publishing his laser paper, Einstein tweaked the equations of his brand-new general theory of relativity in order to better explain the universe (details in Part 1). Weirdly, Einstein didn’t understand the universe, and he later thought the term he added to his equations was a mistake. But it turns out that today’s understanding of the universe’s behavior — expanding at an accelerating rate — seems to require the term that Einstein thought he had added erroneously. But you can’t expect Einstein to have foreseen everything. He probably had no idea that lasers would revolutionize grocery shopping either.
Follow me on Twitter: @tom_siegfried