Wildfire smoke and urban air pollution bring out the worst in each other.
As wildfires rage, they transform their burned fuel into a complex chemical cocktail of smoke. Many of these airborne compounds, including ozone, cause air quality to plummet as wind carries the smoldering haze over cities. But exactly how — and to what extent — wildfire emissions contribute to ozone levels downwind of the fires has been a matter of debate for years, says Joel Thornton, an atmospheric scientist at the University of Washington in Seattle.
A new study has now revealed the elusive chemistry behind ozone production in wildfire plumes. The findings suggest that mixing wildfire smoke with nitrogen oxides — toxic gases found in car exhaust — could pump up ozone levels in urban areas, researchers report December 8 in Science Advances.
Atmospheric ozone is a major component of smog that can trigger respiratory problems in humans and wildlife (SN: 1/4/21). Many ingredients for making ozone — such as volatile organic compounds and nitrogen oxides — can be found in wildfire smoke, says Lu Xu, an atmospheric chemist currently at the National Oceanographic and Atmospheric Administration Chemical Sciences Laboratory in Boulder, Colo. But a list of ingredients isn’t enough to replicate a wildfire’s ozone recipe. So Xu and colleagues took to the sky to observe the chemistry in action.