By Ron Cowen
After years of searching, astronomers may finally have recorded the first image of a planet orbiting a sunlike star beyond the solar system. The body, about eight times Jupiter’s mass, lies exceptionally far from its presumed parent star — roughly 11 times Neptune’s average distance from the sun.
“If this object is a planet at such a wide separation it would challenge our conceptions of planet and companion formation,” says theorist Adam Burrows of Princeton University.
In 2004, researchers imaged an object two to five times as massive as Jupiter and located at a distance from a brown dwarf greater than Pluto’s average distance from the sun (SN: 9/18/2004, p. 179).
But no one has recorded an image of a planet orbiting a sunlike star. Astronomers will need to track the motion of the newly discovered body across the sky for one to two years to determine whether it moves in sync with the star, Jayawardhana says. But even assuming that Upper Scorpius has as many free-floating planets — planetary objects unattached to any star — as stars, the team calculates only about a 0.03 percent chance that a planetary-mass object would lie within 330 AU of 1RXS J160929.1-210524 without orbiting it. Which begs the question, “if this object really is what they think it is, what the hell is it doing out there,” 330 AU from the star, says theorist Alan Boss of the Carnegie Institution for Science in Washington, D.C. One possibility is that the planet formed much closer to the star and then got kicked out, either through gravitational interactions with other planet-forming material in what would have been an unusually large disk, or through the gravity of an as yet undetected massive planet. “It will thus be very interesting to search for the presence of other, closer-in giant planets around this star,” says Lafrenière. If the planet had been ejected, it should have a highly elongated orbit, Boss notes. “If it’s actually on a more circular orbit, then we’re really puzzled,” he adds. It’s also conceivable that the planet didn’t form in a disk in the first place. Instead, the orb and the sunlike star might have arisen together, from the collapse and fragmentation of the same cloud of gas and dust, the Toronto team suggests. But Jayawardhana and Boss agree that it’s hard to imagine that one cloud would have given birth to two objects of such different masses. For now, says Boss, the finding is fascinating simply because it’s an image of an extrasolar planet. “It’s been a challenge,” he says, “just to know what a young Jupiter should look like.”