Frequent liars show less activity in key brain structure
Blunted reaction in amygdala may explain how small lies escalate
When small lies snowball into blizzards of deception, the brain becomes numb to dishonesty. As people tell more and bigger lies, certain brain areas respond less to the whoppers, scientists report online October 24 in Nature Neuroscience. The results might help explain how small transgressions can ultimately set pants aflame.
The findings “have big implications for how lying can develop,” says developmental psychologist Victoria Talwar of McGill University in Montreal, who studies how dishonest behavior develops in children. “It starts to give us some idea about how lying escalates from small lies to bigger ones.”
During the experiment, researchers from University College London and Duke University showed 80 participants a crisp, big picture of a glass jar of pennies. They were told that they needed to send an estimate of how much money was in the jar to an unseen partner who saw a smaller picture of the same jar. Each participant was serving as a “well-informed financial adviser tasked with advising a client who is less informed about what investments to make,” study coauthor Neil Garrett of University College London said October 20 during a news briefing. Researchers gave people varying incentives to lie. In some cases, for instance, intentionally overestimating the jar’s contents was rewarded with a bigger cut of the money.
As the experiment wore on, the fibs started flying. People lied the most when the lie would benefit both themselves and their unseen partner. But these “financial advisers” still told self-serving lies even when it would hurt their partner.
Twenty-five participants underwent fMRI scans while lying. When a person had previously lied, brain activity lessened in certain areas of the brain, most notably in the amygdala. A pair of almond-shaped brain structures nestled deep in the brain, the amygdalae are tightly linked to emotions. This diminished amygdala activity could even predict whether a person would lie on the next trial, results that suggest that the reduced brain activity is actually influencing the decision to lie.
The study design gets around a problem that confounds other lying experiments, says neuroscientist Bernd Weber of the University of Bonn in Germany. Many experiments are based on lies that people have been instructed to say, a situation that “hardly resembles real-world behavior,” he says. Here, the participants were self-motivated liars.
Without any negative consequences from their lies, participants weren’t afraid of being caught. That impunity might affect activity in the amygdala, Weber says. Further experiments are needed to reveal the effects of such fear.
From Ponzi schemes to current politics, case studies abound of small lies spiraling into much bigger deceits, study coauthor Tali Sharot of the University College London said in the news briefing. “There are many reasons why this might happen, societal reasons, but we suspected that there might be a basic biological principle of how our brain works that contributes to this phenomenon,” she said.
The principle she had in mind is called emotional adaptation — the same phenomenon that explains why the scent of strong perfume becomes less noticeable over time. The first time you cheat on your taxes, you’d probably feel quite bad about it, Sharot said. That bad feeling is good, because it curbs your dishonesty. “The next time you cheat, you have already adapted,” she said. “There’s less negative reaction to hold you back so you might be lying more.”