Ancient European farmers and foragers hooked up big time
Genetic evidence shows interbreeding after agriculture arrived from what’s now Turkey
Thousands of years ago, hunter-gatherers native to Europe and incoming farmers from what’s now Turkey got up close and personal for a surprisingly long time, researchers say. This mixing reshaped the continent’s genetic profile differently from one region to another.
Ancient DNA from foragers and farmers in eastern, central and western Europe indicates that they increasingly mated with each other from around 8,000 to nearly 4,000 years ago, a team led by geneticist Mark Lipson of Harvard Medical School in Boston reports online November 8 in Nature. That time range covers much of Europe’s Neolithic period, which was characterized by the spread of farming, animal domestication and polished stone tools.
The new findings lend support to the idea that Europe and western Asia witnessed substantial human population growth and migrations during the Neolithic, says archaeologist Peter Bellwood of Australian National University in Canberra. So much mating occurred over such a long time that “geneticists can no longer assume that living people across Europe are a precise reflection of European genetic history,” he says.
Previous studies of ancient DNA indicated that farmers in Anatolia (modern Turkey) migrated into Europe roughly 8,000 years ago. Researchers generally assumed that newcomers and native hunter-gatherers interbred at first, perhaps as a single wave of farmers moved through Europe to the Atlantic coast, Lipson says. From this perspective, foragers either joined farming cultures or abandoned their home territories and scattered elsewhere. But it now appears that, after a major migration of farmers into Europe, many groups of farmers and hunter-gatherers living in particular regions mingled to varying extents for many centuries, the researchers say.
“Even though there weren’t any major new migrations into Europe after the arrival of farmers, there were ongoing ancestry changes throughout the Neolithic due to interactions between farmers and hunter-gatherers,” Lipson says. Central and northern Europeans next experienced large DNA changes at the start of the Bronze Age around 5,000 years ago, with the arrival of nomadic herders from western Asia (SN: 7/11/15, p. 11).
Lipson’s team analyzed DNA extracted from the skeletons of 154 farmers from Hungary, Germany and Spain, dating to around 8,000 to 4,200 years ago. The farmers’ DNA was compared with DNA from three Neolithic hunter-gatherers found in Hungary, Luxembourg and Spain; a fourth hunter-gatherer from Italy dating to about 14,000 years ago; and 25 Anatolian farmers from as early as 8,500 years ago.
Farmers in each European region displayed increasing amounts of hunter-gatherer ancestry over time, with highs of about 10 percent in Hungary and 20 percent in Germany by around 5,000 years ago, and about 30 percent in Spain by 4,200 years ago. Three farmers from a 6,000-year-old site in Germany fell outside the general trend for that part of Neolithic Europe, displaying 40 to 50 percent hunter-gatherer ancestry.
Genes got passed from farmers to hunter-gatherers as well, although skeletal remains of Neolithic hunter-gatherers are much scarcer than those of their cultivating contemporaries. A hunter-gatherer from the 6,000-year-old German site, identified via chemical markers of diet in the bones, carried around 27 percent ancestry from farmers. A hunter-gatherer discovered at a Hungarian farming site dating to roughly 7,700 years ago possessed about 20 percent ancestry from farmers. Still, previous work has shown neighboring European farmers and hunter-gatherers sometimes kept their distance (SN: 11/16/13, p. 13).
Despite this unexpected evidence of long-term mating among communities with different cultures and styles, the tempo of genetic change and the population sizes of farmers and hunter-gatherers remain poorly understood, says archaeologist Alasdair Whittle of Cardiff University in Wales.