There’s something cool about Arctic bird poop

Ammonia from guano contributes to climate-cooling cloud creation

Arctic birds

FRIGID FECES  The poop left behind by the tens of millions of seabirds that flock to the Arctic each year helps cool the region’s climate, new research suggests.

Ale_Koziura/Shutterstock

Seabird poop helps the Arctic keep its cool, new research suggests.

The droppings release ammonia into the atmosphere, where it reacts with other chemicals in the air to form small airborne particles. Those particles form the heart of cloud droplets that reflect sunlight back into space, researchers propose November 15 in Nature Communications.

Even though the poop’s presence provides only modest cooling, understanding the effect could help scientists better predict how the region will fare under future climate change, says study coauthor Greg Wentworth. “The humor is not lost on me,” says Wentworth, an atmospheric chemist at Alberta Environment and Parks in Canada. “It’s a crucial connection, albeit somewhat comical.”

Arctic air temperatures are rising about twice as fast as temperatures in lower latitudes (SN: 12/26/15, p. 8), a shift that could threaten ecosystems and alter global weather patterns. Scientists still don’t fully understand Arctic climate, though.

Earlier this year, Wentworth and colleagues reported finding surprisingly abundant ammonia in Arctic air. They linked the chemical to the guano of the tens of millions of seabirds that flock to the frigid north each summer. Bacteria in the Arctic dine on the feces and release about 40,000 metric tons of ammonia annually. (The smell, Wentworth says, is awful.) 

Once in the atmosphere, that ammonia reacts with sulfuric acid and water to form small particles that increase the number of cloud droplets, the researchers now propose. A cloud made up of a lot of smaller droplets will have more surface area and reflect more sunlight than a cloud made up of fewer but larger droplets.

This effect causes on average about 0.5 watts of summertime cooling per square meter in the Arctic, with more than a watt of cooling per square meter in some areas, the researchers estimate using a simulation of the Arctic’s atmospheric chemistry. For comparison, the natural greenhouse effect causes about 150 watts of warming per square meter worldwide. On top of that, carbon dioxide from human activities currently contributes about 1.6 watts per square meter of warming on average.

“Birds are in the equation now” when it comes to cloud formation, says Ken Carslaw, an atmospheric scientist at the University of Leeds in England. Understanding how climate change and human activities in the Arctic impact seabirds could be important to forecasting future temperature changes in the region, he says.